

DA-003-001617

B. Sc. (Sem. VI) (CBCS) Examination

April/May - 2015

Mathematics - Paper - 602(A)

(Analysis-2 & Abstract Algebra-2)

Faculty Code: 003

Subject Code: 001617

Time : $2\frac{1}{2}$ Hours]	[Total Marks : 70
Instructions : (1)	All questions are compulsory.

- (2) Answer all M.C.Q. in answer book.
- (2) Figures on the right side indicate marks.
- 1 Answer all M.C.Q.: 20
 - (1) X is Metric space and $E \subset X$. For Fixed $\delta > 0$, collection $\{N(a, \delta) | a \in E\}$ is _____ of E.
 - (A) Closed cover
 - (B) Not cover
 - (C) Open cover
 - (D) None of these
 - (2) X is Discrete metric space and $E \subset X$. E is compact if E is:
 - (A) Infinite subset
 - (B) Finite or Infinite subset does not matter
 - (C) Finite subset
 - (D) None of these

- Which of the following is connected?
 - (A) $R \{5\}$
 - $[-5,1) \cup (1,10]$
 - {1, 3, 5, 7......} (C)
 - (D) None of these
- (4) A and B are separated sets of Metric space X then
 - (A) A = B
 - $A \subset B$ (B)
 - (C) $B \subset A$
 - $A \cap B = \phi$ (D)
- (5)Which of the following is totally bounded set?
 - Infinite discrete Metric space (A)
 - Compact Metric Space
 - (C) Both (A) and (B)
 - (D)None of these
- (6) For $n \in \mathbb{N}$, $L(t^n) = \underline{\hspace{1cm}}$
 - (A) $\frac{n!}{S^{n+1}}$ (B) $\frac{n+1}{S^n}$
 - (C) $\frac{n!}{S^n}$ (D) $\frac{1}{S^n}$

$$(7) \quad L\Big[\big(\sin x - \cos x\big)^2\Big] = \underline{\qquad}.$$

(A)
$$\frac{S^2 - 2S + 4}{S(S^2 + 4)}$$

(A)
$$\frac{S^2 - 2S + 4}{S(S^2 + 4)}$$
 (B) $\frac{S^2 + 2S - 4}{(S - 1)(S - 4)}$

(C)
$$\frac{2S+4}{S(S^2+4)}$$
 (D) $\frac{3S+2}{S(S^2+4)}$

$$(D) \quad \frac{3S+2}{S\left(S^2+4\right)}$$

$$(8) \quad L\left[\sqrt{t} e^{2t}\right] = \underline{\qquad}.$$

(A)
$$\frac{\sqrt{\pi}}{2(S-2)^{3/2}}$$
 (B) $\frac{\pi}{2(S-2)^{1/2}}$

(B)
$$\frac{\pi}{2(S-2)^{1/2}}$$

(C)
$$\frac{\pi}{2(S-2)^{3/2}}$$
 (D) $\frac{\sqrt{\pi}}{2(S+2)}$

(D)
$$\frac{\sqrt{\pi}}{2(S+2)}$$

(9)
$$L^{-1} \left[\frac{1}{4S+5} \right] = \underline{\hspace{1cm}}$$

(A)
$$\frac{1}{4}e^{\frac{-5}{4}}$$
 (B) $\frac{1}{4}e^2$

(B)
$$\frac{1}{4}e^{2}$$

(C)
$$\frac{1}{4}e^{3}$$

(C)
$$\frac{1}{4}e^3$$
 (D) $\frac{1}{4}e^{-\frac{1}{4}}$

(10) If
$$L^{-1}\left\{\overline{f}(S)\right\} = f(t)$$
 and $L^{-1}\left\{\overline{g}(S)\right\} = g(t)$ then

$$L^{-1}\left\{\overline{f}(S)\overline{g}(s)\right\} = \underline{\hspace{1cm}}.$$

(A)
$$\int_{0}^{t} f(u)g(t-u)du$$
 (B) $\int_{0}^{t} f(t-u)du$

(B)
$$\int_{0}^{t} f(t-u) du$$

(C)
$$\int_{S}^{\infty} \overline{f}(S) dS$$
 (D) $\int_{0}^{\infty} \overline{f}(S) dS$

(D)
$$\int_{0}^{\infty} \overline{f}(S) dS$$

(11)	G and G' be two groups and $\phi: G \to G'$ is Homomorphism,			
	e' is	identity element of	' <i>G</i> ' 1	then $\phi(x) = e'$ iff
	(A)	$e \in K_{\phi}$	(B)	$x \in K_{\phi}$
	(C)	$K_{\phi} = \{e\}$	(D)	Both (A) and (B)
(12)				mutative ring without zero tiplicative identity?
	(A)	(Z, +, X)	(B)	(10Z, +, X)
	(C)	(Q, +, X)	(D)	(R, +, X)
(13)	Chai	cacteristic of rings	(i)	$Z_3 + Z_4$ (ii) $Z_6 + Z_{15}$ are
		and	_ re	spectively.
	(A)	3, 6	(B)	12, 30
		3, 6 4, 15		12, 30 12, 90
(14)	(C)	4, 15	(D)	
	(C) Zero	4, 15	(D) $_{P},+_{P}$	12, 90 , \cdot_P) does not exist if p is
	(C) Zero (A)	4, 15 divisors of ring (Z_I)	(D) p, +p (B)	12, 90 $,\cdot_{p}$ does not exist if p is Prime integer
	(C) Zero (A) (C)	4, 15 divisors of ring (Z_i) Any integer Not prime integer	(D) (B) (D)	12, 90 $,\cdot_{p}$ does not exist if p is Prime integer
	(C) Zero (A) (C) Follo	4, 15 divisors of ring (Z_i) Any integer Not prime integer	(D) (B) (D)	12, 90 (\cdot_P) does not exist if p is Prime integer Positive integer
	(C) Zero (A) (C) Follo	4, 15 divisors of ring (Z_i) Any integer Not prime integer owing is Example of	(D) (B) (D) of Fi	12, 90 (\cdot_P) does not exist if p is Prime integer Positive integer

- (16) Which of the following is reducible polynomial?
 - (A) $f(x) = x^3 + 3x + 2$ over $Z_5[X]$
 - (B) $f(x) = x^3 + 2x^2 + 2x + 5$ over $Z_7[X]$
 - (C) $f(x) = x^2 + x + 1$ over $Z_2[X]$
 - (D) $f(x) = x^2 2 \text{ over } Q[X]$
- (17) Let $f(x) = x^3 + 2x + 1$, $g(x) = x^4 + 3x^2 + 2$ are polynomials

of Z[X]. then $deg(f(x) \cdot g(x))$ is

 $(A) \quad 7$

(B) 12

(C) 6

- (D) Does not exist
- (18) Elements of principle ideal generated by 2 in ring

 $(Z_6, +_6, \cdot_6)$ are

- $(A) \quad 0, 1, 2$
- (B) 0, 2, 4
- (C) 0, 3, 6
- (D) 0, 3, 5
- (19) Quaternion set Q is not field because:
 - (A) Q is not ring
 - (B) Addition is not commutative in Q
 - (C) Multiplication is not commutative in Q
 - (D) $(Q-\{0\},X)$ is not group
- (20) If P is prime Number then ring $(Z_P, +_P, \cdot_P)$ is
 - (A) Ring with unity
 - (B) Commutative ring
 - (C) Finite integral domain
 - (D) All of these

2 (a) Attempt any three:

- 6
- (1) Show that every Finite subset of any Metric space is compact
- (2) Show that Every singleton set of any metric space is connected
- (3) Check whether following sets are connected:
 - (i) $E_1 = \{1, 3, 5, 7, \dots, 21\}$
 - (ii) $E_2 = (1, 3)$
- (4) Check whether set {1,16,49,......} is countable set.
- (5) Find: $L\left[e^{-3t}\left(\cos 4t + 3\sin 4t\right)\right]$
- (6) Find : $L^{-1} \left[\frac{3S+4}{S^2+16} \right]$.
- (b) Attempt any three:

- 9
- (1) Using definition of compact set show that (0, 2) is not compact.
- (2) Let E be closed subset of R. Show that if E is Lower bounded then $\mathsf{glb}\,E\in E$.
- (3) Metric space (X, d) is sequentially compact and A be an infinite bounded subset of X. Prove that A has a limit point.
- (4) Find: $L[(\cos at)(\cosh at)]$.
- (5) If $L\{f(t)\}=\overline{f}(s)$ then prove that

$$L\left[t^{n}\cdot f\left(t\right)\right] = \left(-1\right)^{n} \frac{d^{n}}{ds^{n}} \left[\overline{f}\left(s\right)\right], n = 1, 2, 3, \dots$$

(6) Find: $L^{-1}\left[\frac{1}{S(S-1)}\right]$.

(c) Attempt any two:

10

- (1) Show that compact subset of Metric Space is closed and bounded.
- (2) $f: R \to R$ where for $x \in R$, $f(x) = x^2$. Show that f is continuous on R but not uniform continuous on R.
- (3) Show that set R of real numbers is uncountable.
- (4) Find the Laplace transforms of:

$$f(t) = (t-1)^3, t > 1$$

= 0, 0 < t < 1

(5) Using convolution theorem find:

$$L^{-1} \left[\frac{S}{(S+1)(S^2+1)} \right]$$

3 (a) Attempt any three:

6

- (1) Check whether function $\phi: R \to G$ is Homomorphism, where (R,+) and (G,X) are groups and $G = \{Z \in C \mid |Z| = 1\}$.
- (2) (G, *) and (G', Δ) be two groups. $\phi: G \to G'$ is Homomorphism. Show that if e is identity element of G then $\phi(e)$ is identity element of G'.
- (3) Define characteristic of ring. Write all zero divisors of Z_{34} .
- (4) Show that every Field is an integral domain.
- (5) $f(x), g(x) \in \mathbb{Z}_5[X]$. Where $f(x) = 2x^3 + 4x^2 + 3x + 2$ and $g(x) = 3x^4 + 2x + 4$. Find f(x) + g(x) and $f(x) \cdot g(x)$.
- (6) In Quaternion set, Find $[(3+2i)(4j+5k)^{-1}]$.
- (b) Attempt any three:

9

(1) Let (G, *) and (G', Δ) be two groups $\phi: G \to G'$ is Homomorphism. Prove that if K is Normal subgroup of $\phi(G)$ then $\phi^{-1}(K)$ is Normal sub group of G.

- (2) Prove that kernal of Homomorphism $f: G \to G'$ is Normal subgroup of G, where G and G' are groups.
- (3) n is Fixed Positive integer m is non-zero element of ring $(Z_n, +_n, \cdot_n)$. Prove that integers m and n are not relatively prime iff m is zero divisor of ring Z_n .
- (4) U is non empty set. For $A, B \in P(U)$ $A \cdot B = A \cap B$ and $A+B=(A-B) \cup (B-A)$. Show that $(P(U), +, \cdot)$ is ring and Find characteristics of this ring.
- (5) In $Z_5[X]$, divide $f(x) = x^4 + 3x^3 + 2x + 4$ by g(x) = x 1 and Find quotient q(x) and remainder r(x) and Express f(x) as a q(x)g(x)+r(x).
- (6) Find irreducible Factors of $4x^2 4x + 8$ over Q[X].
- (c) Attempt any two:

10

- (1) Show that I is a subring of ring $\left(M_2(R), +, X\right)$ but not left or right ideals of ring $\left(M_2(R), +, X\right)$ where $I = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle/ a, b \in R \right\}$
- (2) G_n is set of all non-zero elements of Z_n , which does not contain zero divisors. Show that (G_n, X_n) is a group.
- (3) State and prove division algorithm theorem for polynomials.
- (4) State and prove Factor theorem and remainder theorem.
- (5) Show that $x^3 + 3x^2 8$ is irreducible over Q[X].